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Reaction between Criegee intermediates and hydroxyacetonitrile:
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Abstract. Hydroxyacetonitrile (HOCH,CN) is released from wildfires and bleach cleaning environments, which is harmful to
the environment and human health. However, its atmospheric lifetime remains unclear. Here, we theoretically investigate the
reactions of Criegee intermediates (CH200 and syn-CH3;CHOOQ) with HOCH,CN to explore their reaction mechanisms and
obtain their quantitative kinetics. Specifically, we design specific computational strategies and methods close to the
CCSDT(Q)/CBS accuracy and use a dual-level strategy for kinetics to elucidate different factors affecting kinetics. We find
an unprecedentedly low enthalpy of activation of —5.61 kcal/mol at 0 K for CH,O0 + HOCH,CN among CH»OO reaction with
atmospheric species containing C=N group. Furthermore, we also find that the low enthalpy of activation is caused by hydrogen
bonding interactions. Moreover, the present findings reveal the rate constant of CH,OO + HOCH,CN determined by loose and
tight transition states has a significantly negative temperature dependence, reaching 107'° cm® molecule™ s™! close to the
collisional limit at below 220 K. In addition, our findings also reveal that the rate constants of CH,O0 + HOCH,CN is 10°%-
102 times faster than that of OH + HOCH,CN at below 260 K. The calculated kinetics in combination with data based on
global atmospheric chemical transport model suggest that the CH,OO + HOCH,CN reaction dominates over the sink of

HOCH,CN at southeast China, northern India at 1 km and in the Indonesian and Malaysian regions at 5 and 10 km.
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1 Introduction

As a reactive nitrogen-containing compound, hydroxyacetonitrile (HOCH,CN) has been recently identified as a CoHsNO
isomer by using I~ chemical ionization mass spectrometry (I-CIMS) instrument detection. However, previously several field
studies had misattributed the C;H3NO signal to methyl isocyanate (CH3sNCO) (Finewax et al., 2024) by using CIMS. CIMS is
insensitive to the detection of isomers, and thus cannot differentiate between the isomers of CH3NCO and HOCH,CN.
CH3NCO had been detected in chemicals released from biomass burning, such as wildfires and agricultural fires, as well as in
bleach cleaning environments (Mattila et al., 2020; Priestley et al., 2018; Wang et al., 2022a; Koss et al., 2018; Papanastasiou
et al., 2020). Therefore, the atmospheric sources of CH3NCO from previous investigations are actually the sources of
HOCH:CN.

Previous studies have demonstrated that HOCH,CN is secondary pollutant with negative impacts on the environment and
human health (Worthy, 1985; Etz et al., 2024; Zhang et al., 2025). Specifically, smoke with HOCH,CN can be injected into
the stratosphere through pyrocumulonimbus clouds, altering the composition of stratospheric aerosols, depleting the ozone
layer, and affecting the Earth's radiation balance (Bernath et al., 2022; Ma et al.; Katich et al., 2023). Additionally, HOCH,CN
is harmful to human health, including damage to the respiratory system and skin (Ganguly et al., 2017; Bucher, 1987).
Therefore, understanding the chemical processes of HOCH,CN is important in the atmosphere.

The atmospheric lifetimes of HOCH,CN in the gas phase are not well understood. Hydroxyl radical (OH) is the most
prevalent oxidant in the atmosphere (Wang et al., 2021). The generally considered removal for this species is through the
reaction with hydroxyl radical (OH). However, the rate constant of OH + HOCH,CN is very slow, about 2.6 < 10-% cm?
molecule st at 298 K (Marshall and Burkholder, 2024). This leads to that OH makes limited contribution to the sinks of
HOCH,CN in the atmosphere. Therefore, it is necessary to explore the other removal routes for HOCH,CN in the atmosphere.

Criegee intermediates are crucial compounds, resulting from the ozonolysis of unsaturated compounds in the atmosphere
(Criegee, 1975; Osborn and Taatjes, 2015; Chhantyal-Pun et al., 2020a; Bunnelle, 1991). Criegee intermediate is considered
to be a key intermediate due to its effect on the atmosphere (Chhantyal-Pun et al., 2020b). They play key roles in the chemical
processes of atmosphere because they significantly contribute to the formation of hydroxyl radical (OH) and sulfuric acid
during the nighttime (Novelli et al., 2014; Lester and Klippenstein, 2018; Kroll et al., 2002; Newland et al., 2018; Kukui et al.,
2021). Additionally, they can form secondary organic aerosols via the formation of low-volatile organic compound percussors
(Khan etal., 2018; Inomata et al., 2014; Docherty et al., 2005; Chhantyal-Pun et al., 2018). In particular, Criegee intermediates
can initiate atmospheric reactions, resulting in additional sinks for atmospheric species such as the reactions of Criegee
intermediates with formic acid, nitric acid, hydrochloric acid, and formaldehyde and so on (Khan et al., 2018; Peltola et al.,
2020; Long et al., 2009; Chung et al., 2019; Foreman et al., 2016; Luo et al., 2023). While reaction kinetics of Criegee
intermediates are prerequisite for elucidating their chemical processes and finding new sink pathways in the atmosphere, their

kinetics are very limited and even unknown.
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In this article, we have investigated the reactions of Criegee intermediates (CH,OO and syn-CHsCHOQ) with HOCH,CN
by designing specific computational strategies and methods to obtain quantitative enthalpies of activation at 0 K for R1 and
R2 (See Scheme 1). Then, we used a dual-level strategy to obtain their quantitative rate constants under atmospheric conditions.
In dual delve strategy, the quantitative enthalpy of activation at 0 K acted as high level is used to calculate the rate constant by
using conventional transition state theory without tunnelling, while the validated density functional methods are used to obtain
recrossing effects and tunnelling by using canonical variational transition state theory involving small curvature tunnelling.
Additionally, torsional anharmonicity and harmonicity are considered in Kinetics calculations. We also considered the
decomposition process of the intermediate product formed in R1. Finally, we discuss the importance of these reactions
investigated here by comparing with the corresponding OH radical combined with the atmospheric concentrations of these

species based on global atmospheric chemistry transport model GEOS-Chem.

N
TS1 AN
HOCH,CN + CH,00 o' € CH R
0—0
s-TS1 ANH_cH,
HOCH,CN + syn-CH;CHOO ——— HO/\ C\ /C (R2)
0—0

Scheme 1. The reaction route for CH.00/syn-CHsCHOO) + HOCH:CN

2 Computational methods and strategies
2.1 Electronic structure methods and strategies

Morden quantum chemical methods and reaction rate theory can be used to obtain quantitative kinetics for atmosphere
reactions (Long et al., 2018). However, the calculated processes are very complex, where error bars are controlled by multiple
parameters. Furthermore, the parameters are correlated with each other. The basic requirement in kinetics calculations is the
quantitative enthalpy of activation that is determined by optimized geometries, zero-point vibrational energies, and single point
energies in electronic structure methods (Long et al., 2019a).

Our previous investigations have shown that W3X-L (Chan and Radom, 2015)//DF-CCSD(T)-F12b/jun-cc-pVDZ
(Gyorffy and Werner, 2018; Parker et al., 2014) can be utilized to obtain quantitative enthalpies of activation at 0 K for the
bimolecular reactions containing Criegee intermediate (Wang et al., 2022b; Long et al., 2021; Xie et al., 2024; Zhang et al.,
2024). Here, we used W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ to investigate the CH,OO + HOCH.CN reaction.
Additionally, CCSD(T)-F12a/cc-pVDZ-F12 was used to validate the reliability of DF-CCSD(T)-F12b/jun-cc-pVDZ for
optimized geometries and calculated frequencies in the CH,OO + HOCH,CN reaction. Thus, with respect to syn-CH;CHOO
+ HOCH CN, the validated DF-CCSD(T)-F12b/jun-cc-pVVDZ method was used to do geometrical optimization and frequency

3
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calculations. In single point energy calculations, it is noted that W3X-L is equal to W2X and post-CCSD(T) components (Chan
and Radom, 2015). Here, we assume that post-CCSD(T) contribution of syn-CH;CHOO + HOCH,CN approximately equates
80 to the contribution from CH,O0 + HOCH,CN. We designed an approximation strategy to obtain accuracy close to W3X-L in
equation (1) for syn-CH3CHOO + HOCH,CN to save computational costs.
MG = DB + DBk 1 wax (1)

Here, AE S~ is the barrier height for the transition state s-TS1 (See Scheme 1). AE{5, " is the barrier height for s-TS1

calculated by W2X. AEETST - is post-CCSD(T) contribution that comes from the difference between W3X-L and W2X
85 inTS1 (See Fig. 1 and 2). The benchmark methods are called higher level (HL) structure methods; this helps to clearly illustrate
the dual-level strategy for kinetics calculations discussed below.

The reliable density functional method was chosen in comparison to the benchmark results to perform direct kinetics
calculations. Here, we chose M06-CR (Long et al., 2016)/MG3S (Zhao et al., 2005) and M11-L (Peverati and Truhlar, 2012)
IMG3S functional method for the reactions of CH,OO and syn-CH3;CHOO with HOCH,CN due to the mean unsigned error

90 (MUD) of 0.23 kcal/mol and 0.72 kcal/mol as listed in Table 1, respectively. MO6CR/MG3S and M11-L/MG3S are called

lower level (LL) electronic structure method in the present work.

Table 1. The enthalpies of activation at 0 K for the transition states of the CH.00/syn-CH3CHOO + HOCH:CN
reactions by various theoretical methods (in kcal/mol).

Methods AHg MUD
TS1
CH,00 + HOCH,CN
W3X-L/DF-CCSD(T)-F12b/jun-cc-pVDZ —5.61 0.00
MO6CR/MG3S -5.38 0.23
W2X//CCSD(T)-F12a/cc-pVDZ-F12 —6.16 0.55
W2X//DF-CCSD(T)-F12b/jun-cc-pVDZ —6.19 0.58
CCSD(T)-F12a/cc-pVDZ-F12 -5.98 0.37
DF-CCSD(T)-F12b/jun-cc-pVDZ —6.77 1.16
M11-L/MG3S —7.52 1.91
syn-CH3;CHOO + HOCH,CN
AERS~TS1//DF-CCSD(T)-F12b/jun-cc-pVDZ -1.39 0.00
W2X//DF-CCSD(T)-F12b/jun-cc-pVDZ -1.97 0.58
M11-L/MG3S .11 0.72
DF-CCSD(T)-F12b/jun-cc-pVDZ -3.13 1.74
M06-CR/MG3S 0.47 1.86

95 2.2 Scale factors for calculated frequencies

Previous studies have verified that the standard scale (See Table S1) is suitable for reactants and some transition states
(Bao et al., 2016b; Zhang et al., 2017). In order to further explore the effect of anharmonicity on the zero-point vibrational

energy, the calculation of the specific reaction scale factors was carried out. The results in Tables S2 and S4 show that the

4
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anharmonicity can be neglected in calculating enthalpy of activation. Details of the calculations can be found in previous work

of Long et al (Long et al., 2023). Therefore, we used standard scale factor in this work.

2.3 Kinetics methods

The rate constants of the reaction (R1) are calculated by considering the tight and loose transition states because of its
low-temperature close-to-collision-limit rate constant. Here, the loose transition state refers to the process from the reactants
to the pre-reaction complexes, while the tight transition state is the process from the reactants to the products via the transition
state TS1 in Figure 1. The steady state approximation based on the unified statistical theory (CUS) (Garrett and Truhlar, 1982;
Bao and Truhlar, 2017; Zhang et al., 2020; Long et al., 2024) is used to calculate the total rate constant by simultaneously
considering both transition states by

_ ktightkloose
kCUS(T) - ktight"’ kioose (1)

where kiighe Was calculated by using a dual-level strategy discussed below, while kioose Was calculated by variable-reaction-
coordinate variational transition state theory (VRC-TST) (Zheng et al., 2008; Bao et al., 2016a; Georgievskii and Klippenstein,
2003). In VRC-TST calculation, the reaction coordinate s is obtained by defining the distance between one pivot point on one
reactant and the other pivot point on the other, and the dividing surface is defined by the pivot point connected to each reactant.
The distance s between the pivot points was varied between 2.6 and 10 A in steps of 0.1 A to find the optimum value.
Simultaneously, 500 Monte Carlo sampling points were used to sample single-faceted dividing surfaces. The VRC-TST
calculation were performed by minimizing the rate constant by changing the distance between two pivot points and the location
of the pivot points. The VRC-TST were performed by M06-CR/MG3S for reaction R1. However, the high-pressure-limited
rate constants of the reaction (R2) were calculated only by considering tight transition state s-TS1.

The dual-level strategy has been put forward and used in previous works (Long et al., 2022; Long et al., 2018, 2019b;
Xia et al., 2022; Gao et al., 2024; Long et al., 2016; Sun et al., 2023). The strategy combines the theory of conventional
transition states (Haring, 1942) on the HL with the theory of canonical variational transition states (Garrett and Truhlar, 1979;
Truhlar et al., 1982) on the LL and takes into account the small curvature tunnelling effect (Liu et al., 1993). In addition, the
torsional anharmonicity factor is considered in our strategy (Long et al., 2023; Zhang et al., 2024; Sun et al., 2023; Li and
Long, 2024; Xie et al., 2024; Jiang et al., 2025). The rate constant is given by eqn (2),

k= k(DT 15T (T) T, (T) FESTT (2)

where k(T)T5T is the rate constant without recrossing and tunneling effects calculated at HL. x;¢7 (T) and T'y, (T) is referred

to tunneling transmission coefficient and recrossing transmission coefficient calculated by LL, respectively. F}"WS;ZL is

torsional anharmonicity factor calculated by using multi-structural method with coupled torsional potential and delocalized
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torsions (MS-T(CD) method) (Zheng and Truhlar, 2013; Chen et al., 2022). Three factors were calculated at the validated

density functional methods at LL. More details were provided in Tables S4 and S5.

2.4 Software

All density functional calculations were performed by using Gaussian 16 (Frisch et al., 2016) and MN-GFM (Zhao et al., 2015)
for geometry optimization and frequency calculations and all coupled cluster calculations by using Molpro 2022 (Werner et
al., 2012) and MRCC code (Kdlay et al., 2020). Direct kinetics calculations were performed using Polyrate 2017 (Zheng et
al., 2017b) and Gaussrate 2017-C (Zheng et al., 2017a). Torsional anharmonicity factor was calculated by using MSTor 2022
code (Zheng et al., 2012). And rate constants were calculated by Kisthelp program package (Canneaux et al., 2014).

3 Results and Discussion
3.1 Electronic Structure calculation results
3.1.1 The reaction of CH.00 + HOCH2CN

The reaction of CH,00 + HOCH2CN has not been reported in the literature. It is noted that there are three different H-O,
C=N, and CH; groups in HOCH.CN. Therefore, we explored four different mechanisms of CH,OO + HOCH,CN as described
in Fig. 1. Three of them is similar to the CH,OO + CH3CN reaction, as they contain the same C-H and C=N bonds (Zhang et
al., 2022).
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Figure 1: The relative enthalpies at 0 K for the reaction of CH200 + HOCH2CN. Values are given for all species as calculated by
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145 M11-L/MG3S.

The most feasible (first) mechanism leads to the formation of five-membered cyclic intermediate M1 via C=N group
oxygen atom of CH,0O0 and the addition of N atom of C=N group in HOCH,CN is added to the central carbon of CH,OO by

addition to COO group in Fig. 1. Specifically, the addition of carbon atom of C=N group in HOCH,CN is added to the terminal

the transition state TS1 (See Fig. 1). This mechanism is the same as CH,0O0 + CH3CN and is like that of the reaction between
7

150 CH.00 and carbonyl group (Long et al., 2021; Luo et al., 2023; Chhantyal-Pun et al., 2018; Chung et al., 2019). We called
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the mechanism as carbon-oxygen addition coupled carbon-nitrogen addition mechanism. The second mechanism still occurs
via five-membered cyclic transition states TS1a and TS1b responsible for the formation of M1a in Fig. 1. The H atom of the
OH group in HOCH.CN is migrated to the terminal oxygen atom of CH,0O, and simultaneously the oxygen atom of OH
group in HOCH,CN is added to the central carbon atom of CH,OO by TS1a and TS1b, which is similar to the reaction of
CH,00 with molecules containing OH group such as H,O/H,0,/HOOCH,SCHO/CH3;C(O)OOH/HOCI (Long et al., 2016;
Zhao et al., 2022; Long et al., 2024; Zhang et al., 2024; Xie et al., 2024). The third mechanism is the addition of C atom on
the C=N group in HOCH,CN to the central C atom of CH,OO and the N atom of C=N group in HOCH,CN to the terminal O
of CH,0O0 by TS1d. The last mechanism is that the H atom on the central CH; group in HOCH,CN shifts to the terminal O
atom of CH,OO0 and the C atom is added to the central C atom of CH,OO via TS1c, which leads to the formation of a peroxide.
We mainly consider the most feasible mechanism in detail in this work because the enthalpy of activation via TS1 at 0 K is at
least 5 kcal/mol lower than those of other reaction pathways by M11-L/MG3S (See Fig. 1). Moreover, the intermediate product
M1 formed has a larger enthalpy of activation of —58.33 kcal/mol in Fig.1.

We previously showed that CCSD(T)-F12a/cc-pVDZ-F12 can reach the accuracy of CCSD(T)-F12a/cc-pVTZ-F12 for
geometrical optimization and frequency calculations for reactions containing C=N groups (Long et al., 2021; Zhang et al.,
2024; Zhang et al., 2022). Therefore, we further show the reliability of DF-CCSD(T)-F12b/jun-cc-pVDZ by using CCSD(T)-
Fl2a/cc-pVDZ-F12. As a result, the difference between W2X//CCSD(T)-F12a/cc-pVDZ-F12 and W2X//DF-CCSD(T)-
F12b/jun-cc-pVDZ shows that DF-CCSD(T)-F12b/jun-cc-pVDZ is only 0.03 kcal/mol for the enthalpy of activation of TS1
at 0 K (See Table 1); this further shows that DF-CCSD(T)-F12b/jun-cc-pVDZ is quantitatively reliable for geometrical
optimizations and frequency calculations in the preset investigations.

The enthalpy of activation at 0 K of R1 via TS1 is computed to be —5.61 kcal/mol calculated by W3X-L//DF-CCSD(T)-
F12b/jun-cc-pVDZ-F12, which is 5.25 lower than that of CH,O0 + CH3CN (Zhang et al., 2022) calculated by W3X-
L//ICCSD(T)-F12a/cc-pVTZ-F12. The much lower enthalpy of activation at 0 K via TS1 in R1 leads to much faster rate
constant of R1, comparing with the CH,OO + CH3CN reaction. Simultaneously, we also found that the activation enthalpy is
2.05 kcal/mol lower than that of the (CF3).CFCN + CH,OO reaction calculated using the best estimate (Jiang et al., 2025).
From geometrical point of view, the much lower enthalpy of activation at 0 K via TS1 is due to the introduction of HO group
in HOCH2CN, comparing with CH3CN; this remarkably change the reactivity of HOCH2CN toward CH,OO0. We note that the
introduction of OH in HOCH,CN results in the formation of hydrogen bonding in TS1. The hydrogen bonding is formed via
the interaction OH group in HOCH,CN with the terminal oxygen atom in CH,OO in TS1. The bond distance between the
hydrogen atom of HO group in HOCH,CN and the terminal oxygen atom of CH,00 in TS1 is computed to be 1.942 A by DF-
CCSD(T)-F12b/jun-cc-pVDZ (See Fig. 2); this shows the formation of hydrogen boning from geometrical point of view (Kar
and Scheiner, 2004). The present results reveal that the hydrogen bonding interaction opens a way for decreasing the enthalpy
of activation at 0 K.
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Figure 2: The relative enthalpies at 0 K for the reaction of CH200/syn-CHsCHOO + HOCH_:2CN for R1 and R2. Values
are given for all species as calculated by M11-L/MG3S, and in small parentheses and brackets, values are given for the
transition state TS path as calculated by W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ. The bond length in TS1 is in units

of A.

CCSD(T) has been considered as “gold standard” in the quantum chemical calculations. However, the previous

investigations have shown that post-CCSD(T) is necessary to obtain quantitative reaction energy barriers for atmospheric
reactions (Long et al., 2019b, 2016; Hansen et al., 2022; Xia et al., 2024). Here, we discuss the contribution of post-CCSD(T)
calculations. The contribution of post-CCSD(T) is 0.58 kcal/mol from the difference between W3X-L and W2X of TS1, which
is the same as the result of the reaction of CH,OO with CH3CN (0.58 kcal/mol) (Zhang et al., 2022) and our previous estimated
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value (0.50 kcal/mol) (Zhang et al., 2022; Zhao et al., 2022). This shows that post-CCSD(T) calculations are necessary for
obtaining quantitative enthalpies of activation for the reaction of Criegee intermediate with HOCH,CN. The MUD of M06-
CR/MGS3S is 0.23 kcal/mol for CH,00 and HOCH,CN in Table 1. Therefore, M06-CR/MG3S was chosen to perform direct
kinetics calculation for the reaction of CH,OO with HOCH,CN.

Decomposition pathways for the formed product M1 have also been investigated at the M11-L/MG3S level; this is similar
to the product decomposition pathway in the CH,OO + CH3CN reaction (Zhang et al., 2022). Firstly, the product M1 undergoes
oxygen-oxygen bond cleavage via M1-TSa to result in forming a singlet biradical intermediate M2, which is similar to the
reaction of CH,00 + HCHO (Jalan et al., 2013). Subsequently, the intermediate M2 undergoes the formation of carbon-
nitrogen bonding to form a three-member ring with the enthalpy of activation of 21.76 kcal/mol relative to M1 via the transition
state M2-TSh. Then, the three-member ring intermediate then undergoes an open-ring coupled hydrogen shift process to form
M4 via the transition state M3-TSc. Eventually, the H atom of the intermediate OH on intermediate M4 is transferred to the N
atom to yield the final product P1. The process was depicted in Fig. 3. The calculated enthalpy of activation at 0 K of P1 is —

86.55 kcal/mol, indicating the unimolecular isomerization is —5.61 thermodynamically driven.

10
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Figure 3: The relative enthalpies at 0 K for the decomposition reactions of the intermediate product M1 formed in the
CH200 + HOCH:CN reaction. Values are given for all species as calculated by M11-L/MG3S.
3.1.2 The reaction of syn-CH3CHOO + HOCH:CN

The reaction of syn-CH3CHOO with HOCH,CN has been also studied by considering similar mechanisms for the reaction
of CH,00 + HOCH,CN. The HL calculation of the enthalpy of activation at 0 K of s-TS1 was performed by employing an

11

approximation method, as listed in eqn (1), which is discussed in method section. The lowest energy route is depicted in Fig.

2 and details can be found in Fig. S1. The enthalpy of activation of s-TS1 at 0 K is —1.39 kcal/mol calculated by HL calculation,
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which is 4.22 kcal/mol higher than that of TS1. The lower reactivity of syn-CH3CHOO than CH,0O results in the much slower
reaction of yn-CH3;CHOO with HOCH,CN. However, the enthalpy of activation for s-TS1 is 5.45 kcal/mol lower than the
reaction of syn-CH3CHOO + CH3CN calculated by W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ (Zhang et al., 2022); this again
shows that the introduction of OH group in HOCH,CN can significantly reduce the enthalpy of activation at 0 K toward
Criegee intermediates. However, the decrease in value of 5.45 kcal/mol between syn-CH;CHOO + HOCH.CN and syn-
CH3CHOO + CH3CN is different from the corresponding value of 5.25 between CH,00 + HOCH,CN and CH,OO + CH3CN;
this indicates that the change in the enthalpy of activation at 0 K is not only determined by the change from CH3CN to
HOCH-CN, but also determined by the change from CH,OO to syn-CH3;CHOQO. Therefore, the enthalpy of activation at 0 K
for every reaction can only be quantitively obtained by specific calculations. We also found that the MUD between the HL
result and M11-L/MG3S is only 0.72 kcal/mol. Therefore, the combination of M11-L functional method with MG3S basis set

was chose to perform direct kinetics calculations.

3.2 Kinetics

The rate constants for the reaction of R1 and R2 have been calculated and listed in Table 3. The details are listed in Table

S5 and S6. We have fitted the calculated rate constants by eqn (3).

ke = A (T+ TO)" exp [ E(T+ Ty) @3)

300 T R(T2+To?)

Here, T is temperature in Kelvin and R is ideal gas constant (0.0019872 kcal mol* K1). The fitting parameters A, n, E,
and To were listed in Table S7. The temperature-dependent Arrhenius activation energies also have been fitted by using egn
(4) as listed in Table 3.

dInk
d(1/T) (4)

E,= -R

The calculated rate constants for k; are decreased from 2.64 %102 cm® molecule™ s to 1.83 <1072 cm® molecule s*
at 200 - 340 K in Table 2, which shows significant negative temperature dependence. The temperature dependent activation
energies are decreased from —3.45 to —5.32 kcal/mol, which provides the evidence for the negative temperature dependence of
the rate constants of R1. The rate constant for the reaction of CH,00 + HOCH,CN is 5.79 %1072 cm?® molecule™* s, which
is 24 times larger than the rate constant for the reaction of OH + HOCH,CN at 298 K (Marshall and Burkholder, 2024). In
particular, we have found that the rate constants of reaction R1 is two magnitude order faster than the reaction of OH +
HOCH,CN when temperature below 260 K (See Table 2).

The rate constant of the reaction R2 ranges from 3.00 x10-%* cm® molecule® s* to 2.03 x10° cm® molecule* s in the
temperature range 200 — 340 K, which exhibits weak negative temperature dependence. As a result, we found that syn-
CH3;CHOO make a minor contribution for the sink of HOCH,CN because the rate constants of syn-CH;CHOO + HOCH,CN
are always lower than those of the reaction of OH + HOCH,CN at 200 — 340 K. However, the rate constant of reaction of R2
is 2.69 %107 cm® molecule™ s, which is two orders of magnitude slower than the rate constant of the reaction of OH +

HOCH,CN and two orders of magnitude larger than that of the reaction of syn-CH3;CHOO + CH3CN, suggesting that the

12
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contribution of syn-CH3CHOO to the sink of HOCH,CN is small, yet this reaction is more favourable than that for the reaction
of syn-CH3;CHOO + CH3CN in the atmosphere (Zhang et al., 2022). Therefore, we do not consider the contribution of syn-
CH3;CHOO to HOCH.CN in the atmosphere. Additionally, we have found that recrossing, tunneling transmission, and torsional
anharmonicity effects for the reaction of R1 and R2 can be negligible because they are close to unit, as listed in Table S5 and
S6.

Table 2. The rate constants (cm® molecule s*) and activation energies (kcal mol?) for the CH.00/syn-CH3:CHOO +
HOCH:CN reactions at different temperatures.

T/IK ki? Ea;? kb Ea® kou ki/kon
200 2.64 x 10710 -3.45 3.00 x 10714 —7.65 1.06 x 10713 2495.80
220 1.32 x1071° —4.33 8.16 x 10715 -3.54 1.25x 10713 1056.27
240 5.26 x 1071 —4.93 5.20 x 10715 -2.55 1.48x 10713 354.83
250 3.39x 107! -5.14 4.46 x 10713 -2.33 1.61 x 10713 210.30
260 2.25x 1071 -5.31 3.92 %107 -2.18 1.76 x 10713 127.83
270 1.52 x 1071 —-5.43 3.16 x 1071 -2.02 1.91 x 10713 79.59
280 1.05 x 10712 -5.52 3.16 x 1071 -2.02 2.07 x 10713 50.90
298 5.79 x 10712 -5.59 2.69 x 1071 -1.98 239 %1013 24.26
300 5.44 x 10712 -5.59 2.65x 107 -1.98 242 %1013 22.45
320 3.04 x 10712 -5.55 229 x 107 -1.99 2.81 x 10713 10.84
340 1.83 x 10712 -5.42 2.03 x 107 -2.04 322 x 10713 5.68

@The rate constants and Arrhenius activation energies for the reaction R1.
bThe rate constants and Arrhenius activation energies for the reaction R2.

3.3 Atmospheric implications

The reaction of OH with HOCH>CN has been investigated in previous work (Marshall and Burkholder, 2024). Therefore,
we considered the competition between the R1 reaction and the OH + HOCH,CN reaction by comparing with their rate ratios

followed by eqn (5),

_ kq[CH,00][HOCH,CN] _ k4[CH,00] (5)
17 kou[OH][HOCH,CN] ~  kou[OH]

where ky is referred to the rate constants of the reaction of CH,OO + HOCH,CN, kon is rate constants of the reaction of OH
with HOCH,CN from the literature (Marshall and Burkholder, 2024).

In the atmosphere, Vereecken et al. have evaluated that the concentrations for stabilized Criegee intermediates are in the
range between 10* and 10° molecule cm™, especially in the Amazon rainforest region, where sCls could reach a maximum
concentration of 10° molecule cm™ (Novelli et al., 2017). Typically, the concentration of OH varies between 10* and 108
molecules cm™ (Ren et al., 2003; Stone et al., 2012; Lelieveld et al., 2016). However, due to the consideration of reactions
CH,00 with H,O and (H20),, the CH,OO concentration in the GEOS-Chem model simulations is always an order of
magnitude less than the results of VVereecken et al. Therefore, we consider the rate ratios between CH,OO + HOCH,CN and
OH + HOCH,CN at different concentrations of CH,0OO and OH at 200-340 K in Table 3, and further discuss the atmospheric

implications based on global atmospheric chemistry model GEOS-Chem.
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Table 3. The concentration ratio of CH200 to OH at different heights from different region in GEOS-Chem.

EGUsphere\

Height T/K P/mbar [CH,00]a [OH]a [CH,00]/[OH]a ki/kon Vi’
India

1 290.2 1013 253.44 1.92 x 104 1.32x107 33.27 0.44
250.5 4959 23.10 1.40 x 104 1.65 %1073 203.47 0.34

10 215.6 242.8 20.22 6.24 x 10° 3.24 x 1073 1262.75 4.09

the southeast of China

1 290.2 1013 95.21 1.49 x 104 6.39 x 1073 33.27 0.21
250.5 4959 19.22 1.49 x 104 1.29 x 1073 203.47 0.26

10 215.6 242.8 11.34 1.08 x 104 1.05 x 1073 1262.75 1.33

Indonesian and Malaysian

1 290.2 1013 150.42 3.45 x 10* 436 x 1073 33.27 0.15

5 250.5 495.9 79.21 1.38 x 104 5.74 x 1073 203.47 1.17

10 215.6 242.8 137.75 5.51 x 10° 2.50 x 1072 1262.75 31.57

2 the data were extracted in the work of Long et al.(Long et al., 2024)
® the product of rate ratio and concentration ratio.

The competition between the CH,OO + HOCH,CN reaction and the OH + HOCH,CN reaction is determined by two

factors, one is the rate constant ratio and the other is the concentration ratio. The concentration ratio decreases with increasing

altitude until two orders of magnitude are observed at 10 km in the Indonesian and Malaysian regions. It is noted that when

the altitude increases, the atmospheric temperature is remarkably decreased. The atmospheric temperatures are 250.5-198 K

at the altitudes from 5-15 km. The results show that although the concentration ratio of two orders of magnitude, CH,OO does

make some contribution to the sink of HOCH,CN at 1 km. At 10 km, CH,OO0 + HOCH,CN can completely dominate over the

OH + HOCH CN reaction in India, southeast China, Indonesia, and Malaysian region (See Table 3 and Figure 4). However,

CH,00 only dominates over the sink of HOCH,CN in the Indonesian and Malaysian regions due to the relatively large ratio

of rate constants and concentration ratios at low temperatures at 5 km. Using the model data, we find that the sink of CH,OO
(See
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Figure 4: The ratio of CH200 to OH at night from literature.(Long et al., 2024) (a) at 1 km, (b) at 5 km, (c) at 10 km,
(d)at 15 km.

4 Conclusions

Wildfires have attracted the attention of researchers due to their impact on aerosols and the ozone layer, which can lead
to adverse effects on the environment and human health. HOCH,CN is a harmful species present in wildfires. Thus, it is
necessary to study its atmospheric chemical processes. The quantitative kinetics for reactions of Criegee intermediates with
HOCH:CN have been investigated by using designing specific computational strategies for electronic structure calculations
and dual-level strategy for kinetics calculations coupled with atmospheric chemistry transport model analysis. The high-
accuracy quantum chemical calculations were performed by using W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ-F12 for reaction
of R1 close to CCSDT(Q)/CBS accuracy and an approximation strategy to reach W3X-L accuracy for R2. Additionally,
CCSD(T)-F12a/cc-pVDZ-F12 was used to verified the reliability of DF-CCSD(T)-F12b/jun-cc-pVDZ-F12 for reaction R1.
Four mechanisms were found for the reactions of CH,OO and HOCH,CN, with the lowest energy pathway route called carbon-
oxygen addition coupled carbon-nitrogen addition. We find an unprecedentedly low enthalpy of activation of —5.61 kcal/mol
at 0 K for the reactions of CH.OO with C=N group of atmospheric species. The present findings uncover that the post-CCSD(T)
is necessary to obtain quantitative enthalpy of activation at 0 K because its contribution is 0.58 kcal/mol. However, we also
find that all the factors contain anharmonicity, recrossing and tunneling, torsional anharmonicity effects, which are negligible
for obtaining guantitative rate constants. The rate constants for the CH,O0 with HOCH,CN increase from 3.18 <10 °t0 2.25
x 1072t cm® molecule s, which is two orders of magnitude higher than the reaction of OH + HOCH,CN below 260 K.
Therefore, the reaction of CH,OO with HOCH,CN dominates over the sinks of HOCH>CN in southeast China, northern India
at 5 km and in the Indonesian and Malaysian regions at 5 and 10 km. This work provides a new insight into the role of Criegee

intermediate in the removal of HOCH,CN.

Supplement. The following information is provided in the Supplement: Standard scale factors and Specific Reaction Scale
Factors; The activate enthalpies at 0 K for the CH,O0 + HOCH,CN reaction at different methods; The anharmonicity effect
for the enthalpy of activation; The rate constants of the reaction of R1 and R2; The fitting parameters for ki1 and k»; The ratio
of the rate constants at various temperatures and different concentration; Absolute energies (Hartree) and the Cartesian
coordinates (A) of the optimized geometries; The relative enthalpies at 0 K for the reaction of CH,00 + HOCH,CN.

Data availability. All raw data can be provided by the corresponding authors upon request.
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